Reg. No:

\square

SIDDHARTH INSTITUTE OF ENGINEERING \& TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech II Year I Semester Regular \& Supplementary Examinations March-2023 PROBABILITY, NUMERICAL METHODS AND TRANSFORMS

(Electrical and Electronics Engineering)
Time: 3 hours

(Answer all Five Units $5 \times 12=60$ Marks) UNIT-I

1 a State and prove additional probability theorem.
b From a city 3 newspapers A,B,C are being published. A is read by 20%, B is read by $16 \%, C$ is read by 14% both A and B are read by 8%, both A and C are read by 5% both B and C are read by 4% and all three A, B, C are read by 2%. Find out the percentage of the population that read at least one paper. OR
2 In a certain college 25% of boys and 10% of girls are studying mathematics. The girls Constitute 60% of the student body. (i) What is the probability that mathematics is being studied? (ii) If a student is selected at random and is found to be studying mathematics, find the probability that the student is a girl (iii) a boy.

UNIT-II

3 Find a real root of the equation $x e^{x}-\cos x=0$ using Newton - Raphson method correct to four decimal places.

OR
4 Using Newton's forward and backward interpolation formulae, obtain the value of $f(1.2)$ and $f(1.8)$ for the given table of values

X	1.1	1.3	1.5	1.7	1.9
$f(x)$	0.21	0.69	1.25	1.89	2.61

UNIT-III
5 Find $y(0.1)$ and $y(0.2)$ using fourth order Runge-Kutta method, given that $y^{\prime}=x^{2}-y$ and $y(0)=1$.

OR
6
Evaluate $\int_{0}^{1} \frac{1}{1+x} d x$ by Trapezoidal rule, Simpson's $\frac{1}{3}$ rule and Simpson's $\frac{3}{8}$ rule and compare the result with actual value

UNIT-IV

7 a Find the Laplace transform of $3 \cos 4(t-2) u(t-2)$
b Find $L^{-1}\left\{\frac{3\left(s^{2}-2\right)^{2}}{2 s^{5}}\right\}$

8 a UsingLaplace transform, evaluate $\int_{0}^{\infty} \frac{\cos a t-\cos b t}{t} d t$.
${ }^{\mathrm{b}}$ Find inverse Laplace transform of $\frac{s^{2}+s-2}{s(s+3)(s-2)}$, using partial fractions.

UNIT-V

9 a Solve $y^{11}+7 y^{1}+10 y=4 e^{-3 t}$ where $y(0)=0, y^{1}(0)=-1$ by using Laplace transform method.
b Find Z-transform of the following (i) $n e^{-a n}$ (ii) $n^{2} e^{-a n}$ CO6 L3 4M

OR

10 a State convolution theorem and use the theorem to CO6 L3 6M evaluate $Z^{-1}\left\{\frac{z^{2}}{(z-a)(z-b)}\right\}$
b Find the inverse Z -transform of $\frac{2 z^{2}+3 z}{(z+2)(z-4)}$
CO6 L1 6M

